
The FrameSoC Software Architecture for

Multiple-View Trace Data Analysis

FrameSoC User Perspective

Generoso Pagano, generoso.pagano@inria.fr

Vania Marangozova-Martin, Vania.Marangozova-Martin@imag.fr

Inria

Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

CNRS, LIG, F-38000 Grenoble, France

Execution Trace Analysis

Achieved goals

FrameSoC in action!

Future works
 Validation with new concrete use cases
 New analysis views
 Diagnosis tool tracking user interactions
 Automatic definition of analysis workflows

Traces are difficult to analyze!

Eclipse Framework

Analysis Views

Publish-Subscribe Inter-View
Communication

Multiple-View Correlation

FrameSoC System Perspective

• Multiple-view graphical user environment for trace analysis
• Software infrastructure for building new analysis views

 Multiple views on trace data

 Global view consistency

 Modular design and easy development

 see trace data from different perspectives
 - do not skip relevant information

 have different levels of abstraction

 different views on data are consistent
 - same color code, same time interval

 uniform behavior

 decoupled view communication
 easy to add new analysis views

First FrameSoC open-source
release at the end of June 2014

• Execution traces help the understanding of application behavior
− debugging, profiling

• huge amount of data
• complex information
• heterogeneous formats

Issues

We need an effective analysis environment

Easy engineering of a dynamic set of analysis views

native
- two peaks

simgrid
- no peak

o

f
ev

en
ts

time

time

o

f
ev

en
ts

native Zoom on the first
peak and visualize it
in the Gantt.

Zoom on a smaller
interval and visualize
it in the Table.

Filter on state transitions
and inspect event details.

We identify a pattern of
memory-related events:
 - Allocating
 - Reclaiming

native simgrid

Allocating and Reclaiming: 20% of native trace
events, but not considered in the simulator.

We trace a parallel application on
both a real system and in Simgrid.

We get an overview of both traces
with the event density chart.

native trace

real system

3 M
events

simgrid trace

simulated system

900 k
events

 easy to add new views
 - custom Eclipse extension point
 - base class for common behavior

 consistent view behavior
 - view highlight, trace deletion
 - react to changes in other views

 basic view management
 plugin/extension point mechanism

 decoupled communication
 - easy incremental evolution
 - shared variables among views

24 s

Problem found!
 - Simgrid made the hypothesis of infinite
 memory, thus ignoring swapping operations
 - Removing this hypothesis solves the problem

Well-defined top-down analysis workflow

FrameSoC multiple-view correlation

Isolate the problem to the memory model

Analyst’s knowledge of the system

