
SoC-TRACE: Handling the Challenge of 

Embedded Software Design and Optimization

Vania Marangozova-Martin

Nanosim, LIG

Vania.Marangozova-Martin@imag.fr

SoC-TRACE Infrastructure Architecture Generic Data Model

• Import a trace
• Register a tool
• Launch a tool

Standard 
software API

Generoso Pagano

MESCAL, INRIA

generoso.pagano@inria.fr

Tracing Embedded Systems

Challenges!

SoC-TRACE project 

• Store several traces in a DB, using a generic data 
model

• Provide access to traces for several tools
• Store analysis results in the DB

Many different formats

Huge amount of data

Various analysis 
techniques and tools

Need for automatic and 
higher level analysis

Trace Management Infrastructure

More 
observability

Increased 
productivity

Better 
software 
quality

• Enhance the exploitation of execution traces for 
debugging and profiling embedded software

• Propose new analysis techniques

• Provide an open-source generic trace management 
infrastructure

• Embedded systems are everywhere!
• Embedded applications are rich and complex
• Execution traces are a powerful instrument to

debug and improve embedded software

Multi-Trace DB

SoC-Trace Library 

SoC-Trace
Management Tool Pattern 

Mining Tool

----------
----------
----------

Black Box Tools

External 
Files

Java Tools

KPTrace 
Importer

An example of analysis
Preliminary results

Future works

A DB containing 
both traces and 
analysis results

Shared Data Model

Tool integration

Optimizations
Validation against new concrete use cases
Relations between data model and visualization
Protocol for tool collaboration

Importing traces of three different formats
the data model is generic!

Management of multiple traces
multi-trace analysis is possible!

Producing and saving analysis results 
avoid time-consuming recomputation!

Self defining pattern to represent several formats

Predefined but customizable analysis result types

• A Pattern Mining Tool finds a pattern, identified by the exact sequence of events:
sys_read
alsa_read

• All pattern instances and exceptions (above events outside the pattern) are saved 
in the DB as a hierarchy of groups

PATTERN

INSTANCES EXCEPTIONS

instance 1 instance 2 instance N sys_read events 
outside the pattern

alsa_read events 
outside the pattern

The analysis result is 
stored in the DB using 
the entities of the 
shared data model

The trace is stored in the 
DB using the entities of 
the shared data model

Pattern mining analysis

A standard software API and a shared data model allow for tool
integration and cooperation


